Posts Tagged ‘assertion’

h1

Interpreting the third truth value in Kripke’s theory of truth

March 28, 2010

Notoriously, there are many different theories of untyped truth which use Kripke’s fixed point construction in one way or another as their mathematical basis. The core result is that one can assign every sentence of a semantically closed language one of three truth values in a way that \phi and Tr(\ulcorner\phi\urcorner) receive the same value.

However, how one interprets these values, how they relate to valid reasoning and how they relate to assertability is left open. There are classical interpretations in which assertability goes by truth in the classical model which assigns Tr the positive extension of the fixed point, and consequence is classical (Feferman’s theory KF.) There are paraconsistent interpretations in which the middle value is thought of as “true and false”, and assertability and validity go by truth and preservation of truth. There’s also the paracomplete theory where the middle value is understood as neither true nor false and assertability and validity defined as in the paraconsistent case. Finally, you can mix these views as Tim Maudlin does – for Maudlin assertability is classical but validity is the same as the paracomplete interpretation.

In this post I want to think a bit more about the paracomplete interpretations of the third truth value. A popular view, which originated from Kripke himself, is that the third truth value is not really a truth value at all. For a sentenc to have that value is simply for the sentence to be ‘undefined’ (I’ll use ‘truth status’ instead of ‘truth value’ from now on.) Undefined sentences don’t even express a proposition – something bad happens before we can even get to the stage of assigning a truth value. It simply doesn’t make sense to ask what the world would have to be like for a sentence to ‘halfly’ hold.

This view seems to a have a number of problems. The most damning, I think, is the theory’s inability to state this explanation of the third truth status. For example, we can state what it is to fail to express a proposition in the language containing the truth predicate: a sentence has truth value 1 if it’s true, has truth value 0 if it’s negation is true, and it has truth status 1/2, i.e. doesn’t express a proposition, if neither it nor its negation is true.

In particular, we have the resources to say that the liar sentence does not express a proposition: \neg Tr(\ulcorner\phi\urcorner)\wedge\neg Tr(\ulcorner\neg\phi\urcorner). However, since both conjuncts of this sentence don’t express propositions, the whole sentence,¬† the sentence ‘the liar does not express a proposition’, does not itself express a proposition either! Furthermore, the sentence immediately before this one doesn’t express a proposition either (and neither does this one.) It is never possible to say a sentence doesn’t express a proposition unless you’ve either failed to express a proposition, or you’ve expressed a false proposition. What’s more, we can’t state the fixed point property: we can’t say that the liar sentence has the same truth status as the sentence that says the liar is true since that won’t express a proposition either: the instance of the T-schema for the liar sentence fails to express a proposition.

The ‘no proposition’ interpretation of the third truth value is inexpressible: if you try to describe the view you fail to express anything.

Another interpretation rejects the third value altogether. This interpretation is described in Fields book, but I think it originates with Parsons. The model for assertion and denial is this: assert just the things that get value 1 in the fixed point construction and reject the rest. Thus the sentences¬† “some sentences are neither true nor false”, “some sentences do not express a proposition” should be rejected as they come out with value 1/2 in the minimal fixed point. As Field points out, though, this view is also expressively limited – you don’t have the resources to say what’s wrong with the liar sentence. Unlike in the previous case where you did have those resources, but you always failed to express anything with them, in this case being neither true nor false is not what’s wrong with the liar since we reject that the liar is neither true nor false. (Although Field points out that while you can classify problematic sentences in terms of rejection, you can’t classify contingent liars where you’d need to say things like ‘if such and such were the case, then s would be problematic’ since this requires an embeddable operator of some sort.)

I want to suggest a third interpretation. The basic idea is that, unlike the second interpretation, there is a sense in which we can communicate that there is a third truth status, and unlike the first, 1/2 is a truth value, in the sense that sentences with that status express propositions and those propositions “1/2-obtain” – if the world is in this state I’ll say the proposition obtails.

In particular, there are three ways the world can be with respect to a proposition: things can be such that the proposition obtains, such it fails, and such that it obtails.

What happens if you find out a sentence has truth status 1/2 (i.e. you find out it expresses a proposition that obtails)? Should you refrain from adopting any doxastic attitude, say, by remaining agnostic? I claim not – agnosticism comes about when you’re unsure about the truthvalue of a sentence, but in this case you know the truth value. However it is clear you should neither accept nor reject it either – these are reserved for propositions that obtain and fail respectively. It seems most natural on this view to introduce a third doxastic attitude: I’ll call it receptance. When you find out a sentence has truth value 1 you accept, when you find out is has value 0 you reject and when you find out it has value 1/2 you recept. If haven’t found out the truth value yet you should withold all three doxastic attitudes and remain agnostic.

How do you communicate to someone that that the liar has value 1/2? Given that the sentences which says the liar has value 1/2 also has value 1/2, you should not assert that the liar has value 1/2. You assert things in the hopes that your audience will accept them, and this clearly not what you want if the thing you want to communicate has value 1/2. Similarly you deny things in the hope that your audience will reject them. Thus this view calls for a completely new kind of speech act, which I’ll call “absertion”, that is distinct from the speech acts of assertion and denial. In a bivalent setting the goal of communication is to make your audience accept true things and reject false things, and once you’ve achieved that your job is done. However, in the trivalent setting there is more to the picture: you also want your audience to recept things that have value 1/2, which can’t be achieved by asserting them or denying them. The purpose of communication is to induce *correct* doxastic state in your audience, where a doxastic state of acceptance, rejection or receptance in s is correct iff s has value 1, 0 or 1/2 respectively. If you instead absert sentences like the liar, and your audience believes you’re being cooperative, they will adopt the correct doxastic attitude of reception.

This, I claim, all follows quite naturally from our reading of 1/2 as a third truth value. The important question is: how does this help us with the expressive problems encountered earlier? The idea is that in this setting we can *correctly* communicate our theory of truth using the speech acts of assertion, denial and absertion, and we can have correct beliefs about the world by also recepting some sentences as well as accepting and rejecting others. The problem with the earlier interpretations was that we could not correctly communicate the idea that the liar has value 1/2 because it was taken for granted that to correctly communicate this to someone involved making them accept it. On this interpretation, however, to correctly express the view requires only that you absert the sentences which have value 1/2. Of course any sentence that says of another sentence that it has value 1/2 has value 1/2 itself, so you must absert, not assert, those too. But this is all to be expected when the obective of expressing your theory is to communicate it correctly, and that communicating correctly involves more that just asserting truthfully.

Assertion in this theory behaves much like it does in the paracomplete theory that Field describes, however some of the things Field suggests we should reject we should absert instead (such as the liar.) To get the idea, let me absert some rules concerning absertion:

  • You can absert the liar, and you can absert that the liar has value 1/2.
  • You can absert that every sentence has value 1, 0 or 1/2.
  • You ought to absert any instance of a classical law.
  • Permissable absertion is not closed under modus ponens.
  • If you can permissibly absert p, you can permissibly absert that you can permissibly absert p.
  • If you can absert p, then you can’t assert or deny p.
  • None of these rules are assertable or deniable.

(One other contrast between this view and the no-proposition view is that it sits naturally with a more truth functionally expressive logic. The no-proposition view is often motivated by the motivation for the Kleene truth functions: a three valued function that behaves like a particular two valued truth function on two valued inputs, and has value 1/2 when the corresponding two valued function could have had both 1 or 0 depending on how one replaced 1/2 in the three valued input with 1 or 0. \neg, \vee is expressively adequate with respect to Kleene truth functions defined as before. However, Kripke’s construction works with any monotonic truth function (monotonic in the ordering that puts 1/2 and the bottom and 1 and 0 above it but incomparable to each other) and \neg, \vee are not expressively complete w.r.t the monotonic truth functions. There are monotonic truth functions that aren’t Kleene truth functions, such as “squadge”, that puts 1/2 everywhere that Kleene conjunction and disjunction disagree, and puts the value they agree on elsewhere. Squadge, negation and disjunction are expressively complete w.r.t monotonic truth functions.)

Advertisements